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ON LEAST SQUARES FITTING NONLINEAR SUBMODELS

Gordon G. Bechtel

Oregon Research Institute

Abstract

Three simplifying conditions are given for obtaining least squares

(LS) estimates for a nonlinear submodel of a linear model. If these are

satisfied, and if the subset of nonlinear parameters may be LS fit to the

corresponding LS estimates of the linear model, then one attains the

desired LS estimates for the entire submodel. Two illustrative analyses

employing this method are given, each involving an Eckart-Young (LS) decom-

position of a matrix of linear LS estimates. In each case the factors provide

an LS fit of the nonlinear submodel to the original data. The minimum error

sum of squares for this fit is the error sum of squares for the corresponding

linear model plus a function of the eigenvalues involved in the factoriza-

tion. An Eckart-Young Factorization, however, is only a special case of an

LS decomposition of LS estimates. The present method is more generally

applicable (under the three simplifying conditions) whenever any LS procedure

may be Found for Fitting certain parameters of a nonlinear submodel to the

corresponding LS estimates of a linear model.
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ON LEAST SQUARES FITTING NONLINEAR SUBMODELS

Gordon G. Bechtel

Or_gon Research institute

Least squares estimation procedures are readily available for linear

models which, depending upon their structure, generate "regression analyses"

or "variance analyses" for particular data layouts. Since the parameters

of nonlinear models are more difficult to estimate in an analytic way,

their estimates are usually obtained by approximate iterative techniques.

However, these techniques suffer from problems of local minima and may

be rather unwieldy. Therefore, it is the purpose of this paper to

present conditions which, if met by a particular nonlinear model, simplify

the analytic problem of finding exact least squares estimates for its

parameters.

Our approach is similar to that of the analysis of variance, where

constraints (hypotheses) generate a linear submodel of a linear model.

However, we shall use the general linear model as a device for embracing

a nonlinear submodel of interest. This device makes it possible, under

certain conditions, to obtain exar.t LS estimates for all of the submodel

parameters by (1) LS fitting only the nonlinear parameters to the corresponding

LS estimates of the linear model, and (2) preserving the remaining LS

estimates of the linear model. In this way some difficult nonlinear

least squares problems may be reduced to manageable form. Moreover,

when the major interest is in the linear model itself, this technique consti-

tutes an adjunct analysis, i.e., a further data breakdown, for the analysis

of variance associated with that linear model.

The theoretical part of the paper presents the general linear model,

and its nonlinear submodel, in partitioned form. This partitioning identifies
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the subset of LS estimates to be submitted to further LS decomposition.

It also permits the error sum of squares for the nonlinear submodel to

be written as the (fixed and known) minimum error sum of squares for

the linear model plus the sum of two other partitioned terms. These

two terms represent additional error incurred under the nonlinear hypothe-

sis, and this excess error sum of squares is analogous to the (linear)

hypothesis sum of squares in the analysis of variance.

Subsequently, three conditions are invoked to reduce the sum of these

two partitioned terms to a multiple of another error sum of squares,

i.e., that for fitting the nonlinear parameters to the corresponding LS

estimates of the linear model. The analytic minimization of this latter

error sum of squares, if available, minimizes the entire error sum of

squares for fitting the nonlinear submodel to the data. Two specific

nonlinear problems, each satisfying these three conditions, and each

amenable to an absolute minimization of the second error sum of squares,

illustrate the usefulness of the method.

Conceptual Approach

The Linear Model

Since the conceptual approach rests upon partitioned, vectors and

matrice-1, we write the general linear model as

(1) Y = + e\-y

where (Xi Z)Z) is the design matrix and is the parametric vector. The
1

mode; is fit to the vector y of observations with a resulting error vector

e. A vector (-.7g-) of least squares estimates is one which minimizes the
Y/

error sum of squares e'e at e'e, where
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e = y (X ;z) (4) .

The Nonlinear Submodel

The nonlinear model of interest may be generated by placing a

hypothesis

(2) H:y = g(a)

upon the linear model. The function g is a nonlinear constraint upon

Y in the argument a, which is some specified set of parameters. We

then write the nonlinear submodel, i.e., the conjunction of (1) and (2),

as

(3) y = (6) ( + f ,

where f is a vector of errors. Our purpose in generating (3) as a submodel

of (1) is not to test hypothesis (2), as is usually the case, but

rather to use (2) as a device for LS .-:.-timation. This will be accomplished

through the manipulation of the error sum of squares f'f for (3).

The Error Sum of Squares for the Nonlinear Submodel

We may write the error vector for the submodel as

f = y (6) 4))
= y (6)(9 + (X Z) (5,) (xiz

= e + (6)

where e = g(a). The /east squares problem for (3) is that of choosing

so as to minimize the error sum of squares

(4) Y(R,e) = f'f

(X:7)+ (6) 01 + (81
E

= + 2(V-ViE Ez-X;).; + ()0(XjZ) e=s9 .
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Equation (4) showy that ..Y7 is the sum of a known, fixed value e'e, which

is the error sum of squares for the corresponding linear model, and

two other terms, which depend upon the submodel parameters (3,a .

LS Fitting a to

The following three paragraphs give conditions for obtaining an

LS fit of 13,a to y by means of an LS fit of a to Y:

Submodel invariance of S. The elements of f3 enter (3) linearly,

while those of a enter this submodel nonlinearly. In certain applications

it may be possible to find the LS estimate TE. under the submodel, i.e.,

the value of 13 which minimizes ,J4 , without simultaneously solving for

the least squares estimate Os. Moreover, if

(5) a= s ,

which is the LS estimate under the corresponding linear model, then

this value may be inserted into (4) reducing 5'(R,e) to

(6) t,1 -(E) = e'e 2e-ZE c'Z'Ze .

c.,P' is the sum of the error sum of squares for the corresponding linear

model, a bilinear form in Z, and a quadratic form in Z"Z. Since these

forms depend only upon E, and hence only upon a, the LS solution for

the nonlinear submodel is completed by choosing a to minimize the sum

of these bilinear and quadratic forms. Of course, this itself may pre-

sent a formidable problem, and, therefore, we invoke two more conditions

to reduce the latter sum to a multiple of CE .

Vanishing bilinear form e'ZE. If in a particular analysis the

structure of e, Z, and E is such that

(7)

then we have

e'ZE = 0,
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(8) O'(E) = e'e + c'Z'ZE ,

which depends only upon a through the quadratic form in Z-Z.

Reducible quadratic form E'Z'ZE . The structure of Z and c may

also permit the reduction

(9) c'Z'ZE = cc'E ,

of the quadratic form, where c is a known constant characteristic of the

particular analysis. In this case, we can write

(10) Y"(E) = e'e + cc'E ,

which depends only upon a through the sum of squares e'c.

When conditions (5), (7), and (9) hold, the LS estimate & may be found

by minimizing c'E , which is the error sum of squares for the model

(11) Y = g(a) + E.

The LS problem for model (11) is, of course, simpler than that for model

(3), which requires a direct minimization of ..)° in (4). The usefulness

of (11) is illustrated in two nonlinear analyses in which (5), (7), and

(9) are satisfied.

Two Illustrative Analyses Involving Eckart-Young Decompositions

Gollob's Factor Analysis of Variance (FANOVA)

The linear model. The linear model for the standard two-way analysis

of variance may be written in scalar form as

(12) y..
k

= p
j

e + n
k

+ pjk + e.
tj jk

The e
j

and are main effects, the p
jk

are interactions, and
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(13a) Li. = = 0
j k

(13b) Fpjk
kpjk

(j=1,...,J; k=1,...,K) .

in the J x K layout (J > K) with m observations per cell (i=1,...,m) the

LS estimates are

= y...

(1 4)

6. = y
J

.

J
n = y

..k
Y

Pjk Yjk Y.j. Yk Y...

where a dot indicates an average over the subscript it replaces. A

typical element of the error vector e is

e.., Y
I I JK. jr.

and the error sum of squares is

(15) k)2
ijk

The nonlinear submodel. Gollob's (1968) FANOVA model

r

(16) Yijk = P + e. + n
k
+ y Xj 7 f.

p pk tjk
P=1

is a submodel of (12) which is formed by placing the interaction terms under

the constraint

H:p
jk

= F X. T
pk

k=1,...,K) .

jp
P=1

The hypothesis H sets each pjk equal to an inner product over *lc) dimen-

sions.h100thee.arinksatisfy(13,3),,Bricidlex.and Tpk satisfy
JP

X.
P k

= XT
Pk

= 0

j J

XT
2

Pk
= 1

r

(p=1,...,r),

(p=1,...,r),



(17c) TA x = YT T
jp jq pk qk

k

(1:q) .

7

Equation (17a) replaces (13b), while (17b) and the orthogonality condi-

tions d Tpk under the
JP

factorization H.

Identifications. In examining the FANOVA model we make the following

identifications with the preceding notation:

{p,19j,r1k}

Y = {Pik}

E {cid ,

where

, .elk
jk

YAjp

In the two-way layout with m observations per cell Z may be partitioned

vertically, and the submatrix Z. for the ith replicate is given in Table 1.

The rows and columns are labeled by the observations yijk and the inter-

actions pjk. Since this submatrix, which is the JK x JK identity matrix,

is repeated for each replicate i=1,...,m , the matrix Z may be written as

Insert Table 1 about here
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3ubmodel invariance of {11,0.01
k
}. The error sum of squares for (16) is

= XXXf.
ijk IJk

and, introducing Lagrange multipliers 4) and p for (13a), we generate

= )0+ + tqn
j k k

Setting to zero the derivatives of / with resper_t to p, e., and
k

using (13a) and (17a), and eliminating cl) and we find that

(18) 6. = 6. ,

nk nk

which are given by (1k).

The vanishing bilinear form. The bilinear form in this analysis is

= L e., z
i,j,k 1k ijk,lm lm1,m ij

where the element of Z is

1 1,m = j,k

0 otherwise
zi
jk,lm

Thus we have

(19) = E,
Ijk

ijk

= e. .
.L jk

Xe
Ijk

JK I

= 0 ,

10
VIEMIIMP
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Gei jk (Yijk Y'jk) °

The reduction of the quadratic form. The matrix Z'Z is

Z'Z = Z:Z.

i=1

= mI
JK

.

Therefore, the quadratic form may be written as

(20) c'Z'Ze = c'mIJKc

= me

2
= m/Tc.

Jk 7

jk

and the error sum of squares for (16) is

(21) (Y- k- +
k

.

ijk jk

The Eckart-Young decomposition of the Pik. Due to (21) we may obtain

BestimatesoftheA.and T
pk

by LS fitting these parameters to the p.
JP jk

through the model

= yx
Pjk j p

T Ej
pk k

7

which, in matrix notation, is

(22)

where

P = AT + E ,

P = (pjk) is the J x K matrix of estimated interactions,

A= (A.
)

isaJxrmatrix
7

JP

1.1
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T = (T
pk

) is an r x K matrix,

E = (ejk) is a J x K matrix of residual errors.

The LS subproblem for (22) is easily solved by an Eckart-Young decompo-

sition of P. This provides estimates A and T which minimize

= YS'E
jk

jk

and hence the second term of0P- in (21), The LS estimate of T in (22) is

riven by

(23) f =
pk

) =

I,- 1'

r

where the rows T1,...,Tr are r orthonormal (unit length) eigenvectors

corresponding to the r(< K 1) largest eigenvalues of the K x K, rank

K 1 matrix P-P (e.g., see Eckart & Young, 1936; Householder & Young,

1938; Keller, 1962; Whittle, 1952). With T thus constructed, the LS

estimate of A is obtained as

(24) A = (x. ) = .

jp

In this particular least squares solution T is row-wise orthonormal, and

A is column-wise orthogonal, i.e.,

(25a) TT' = I ,

(25b) = L ,

where the r diagonal elements

1

> . > > 0
r

of the diagonal matrix L are tlfe r largest eigenvalues of P-P. Equations

(25a) and (25b) restate (17b) and (17c) in matrix notation.

2
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The Eckart-Young decomposition for (22) completes the solution

since it provides the a and -T. which, along with 11. 6., and nk, are
it) pk

exact LS estimates for fitting (16) to the original data yijk. The

associated minimum error sum of squares for (16) may be found by noting that

(26) min mYIe? = mYW,
jk jk

K-1

= m 2 ,

p=r+1 P

where the latter summation is taken over the (K-1)-r positive eigenvalues

not used in the construction of T (Keller, 1962). Since we have chosen the

rows of T as r orthonormal eigenvectors corresponding to the r largest

eigenvalues of P'P, this summation is over the (K-1)-r smallest positive

eigenvalues. Due to (26) the minimum of (21) is

(27) mincY9' = e'e + c min E'E

K-1

Y//(Yiik Y.jk)2 m
ijk p=r+1 P

which is the error sum of squares in LS fitting the FANOVA submodel to the

replicated two-way layout. Expression (27) consists of the usual error

sum of squares for this layout incremented by a second term representing

the (K-1)-r deleted factors in the Eckart-Young decomposition of the

rank (K-1) matrix of estimated interactions. Of course, if all K 1

factors are extracted, then the second term vanishes, and the e,or sum

of squares takes a minimum value equal to that for the two-way analysis of

variance.

The Multidimensional Choice Scaling of Bechtel, Tucker, & Chang

The linear model. In a three-way layout of graded paired comparisons

a typical observation yijk indicates the strength of choice for object j

over object k in replicate i, e.g., individual i (Bechtel, Tucker & Chang,

1
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in press). When n objects are being studied, each replicate contains (r2))

comparisons, and hence there are m(2) observations in a design involving

m (> n) replicates. The linear model for this pairwise choice layout is

(28)
Yijk eij eik Pjk eijk '

where the eij and eik are intrareplicate scale values, the pik are inter-

replicate interactions (pik = -cki), and

(29a)

(29b)

ye.. = o

Pik
0

kij
(1 =1, ,n) .

The LS estimates of the parameters of (28) are

(30)

6. ieij nk ijkY.

pjk =y
*jk

-0*j + 0
k

a typical element of the error vector P is

e.Ij. = y. eij + 0i pk

tjk k jk
,

and the error sum of squares for fitting the model is

Y(Y" -eij
6'k ;j k)2

(31)

ji<k ijk

The nonlinear submodel. The observational equation

(32) yi y X. T . Xi. T pj + f
jk ip DI p pk k ijk

p=1 p=1

given by Bechtel, Tucker, and Chang (in press), is generated by placing the

constraint

H:0.. y
X. P

T
PJ

. (i=1,...,m; j=1,...,n)

P=1
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upon the scale values in (28). In (32) the pjk satisfy (29b), and the Air)

and T
PJ

. satisfy

(33a) Xrpj = 0 (n=1,...,r)

(33b) XT
j

1 (p= 1,...,r) ,

P

(33c) XT
PJ

.T = A. X. = 0 (00 .

q

Equation (33a) replaces (29a), while (33b) and the orthogonality conditions

(33c) are required for' the uniqueness of the
1p PJ

under the factori-

zation H.

Identifications. The following definitions link the components of the

choice model to the preceding general notation:

=
jk }

where

Y E {e..}

E {eu} ,

E.. E 6.. yx, T .

IJ IP PJ

In this replicated paired comparisons design the matrix Z, which is

m(
2 '

) x mn, may be partitioned into m
2
submatrices, each being (

n

2)
x n.

The submatrix Z..., for replicates i and i', is the zero matrix for

i i'. For i = i' it is the pairs x singles scale matrix in Table 2,

where the rows and columns are labeled by the observations yijk and the

scale values 6.. . Since this submatrix is invariant over replicates

= 1,...,m , the matrix Z may be written as

15
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Z = 0 . . .Zii. . . 0

0 . . . 0 . . . Z

Insert Table 2 about here

S . . . 0 . . . 0

0 . . . S . . . 0

10
0 s
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Submodel invariance of fp
jk

1. The error sum of squares for (32) is

XY
ij<k

and, introducing Lagrange multipliers qb. for (29b), we have

= cy9 1(pi

j -"kj

Setting to zero the derivative of? with respect to p using (29b) and
jk'

(33a), and eliminating the 4i, we find that

(34) Pj = Pjk
k

,

which is given by (30).

The vanishing bilinear form. The bilinear form in the error sum

of squares for this analysis is

e'ZE = X y ;,,kzijk,m,m ,

i,j,k 1,m J

where the element of Z is

1 when 1,m = i,j
z.
ijk,lm

-1 when I,m = i,k
0 otherwise

1 c;



Thus we have

1;.'ZE = /X
Lei

X/ XL. C
ijk i j ijk ik

= Xi jk (Ei
j

Ei k )

ij<k

and, since
ijk

. we may write
'kJ'

(35) = -XX / (E Ei. )
Ijk ij k

ij kij

=
j IJ

1IYE2 k 2 ik ijk
k#j IJ ik jk

= 0 .

Equation (35) follows from the fact that

jkeijk
kWij kW'ijk 6ij + 61k ;jk) 0

due to (29a), (29b), (30),and the skew-symmetry of feijkl.

The reduction of the quadratic form. The matrix Z-Z for (28) is

S'S . . 0 .

Z-Z = 0 . .S'S. 0

0 . . . 0 . . .S'S/

15
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where

S'S =

n-1 . .

-1 . . .n-1. . . -1

. -1. . .n-1

Therefore, the quadratic form in the error sum of squares for (32) is

E'rZE = (';...H I

I 0 .S'S. 0

1" i IE

= E'S'SE.

i=1

0 . . 0 . . .S

th
I J

.

where E: is the 1 row of the matrix (E..). Letting (1) denote an
1

.th
n x n matrix with each entry equal 1, we may reduce the 1 quadratic

form under the latter summation to

EIS'SEI = (1)]ei

= E:nIE. E(1)E.
1

= ne:e.
I

which follows from the fact that E:(1) is the zero vector, i.e.,

XE.. = yo.. T
P

.) 0
1-1 j

(i=1,...,m)



17

due to (29a) and (33a). Using this reduction we then write the entire

quadratic form as

(36) e'2-Ze = n X e:E.

vr 2
= n2Le,. ,

ij 1J

and hence the error sum of squares for (32) as

(37) (>47" = XI I(y 6 + 6. )2 + e
,.

ij<k
ijk ij rk .jk j

I J

TheEckart-Youngdecompositionofthee_Equation (37) enables
ij

us to obtain LS estimates of the Xip and T
P

. by LS fitting these parameters

to the 6.. through the model

6..IJ = /X.
JP

T
PJ

. E.. ,

which, in matrix notation, is

(38)

where

= AT E ,

= (e..) is the m x n matrix of estimated scale values,

A = (X.
ip

) is an m x r matrix,

T = (T
Pi

) is an r x n matrix,

E = (e
ij

) is an m x n matrix of residual errors.

An Eckart-Young decomposition of 6 in (38) provides estimates A and T

which minimize

rr 2
= ,

j

and hence the second term of bP' in (37). The construction of A and
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which has been described in detail by Bechtel, Tucker and Chang (in press),

is similar to the construction of the estimated factors in the FANOVA model.

The Eckert-Young decomposition for (38) completes the analysis

by providing the Xip and -rpj which, along with the Pik, are LS estimates

for fitting (32) to the original paired comparisons yijk. The error sum

of squares for this fit is the minimum of Y' in (37) and is attained

at the minimum

n-1
vr

(39) rILLE2 = n y ,

ij p=r+1 P

of the second term of (50'. Since rank 0 = rank 8-8 = n-1 due to (29a) ,

the summation on the right is over the (n 1)-r smallest positive eigen-

values of 0-0. Substituting (39) into (37) gives

(40) min 01t' = e'e + c min c'e

n-1

=
cc

PY..k O.. + e. - ; )2 +nyt
ij<k IJ

ik jk
p=r+1 P

which is the error sum of squares for LS fitting the choice submodel

to the three-way layout of paired comparisons. In (40) the error sum of

squares for the corresponding linear model is incremented by a second

term whenever the number r of factors in the Eckart-Young decomposition

is less than the rank (n-1) of the matrix of estimated scale values. When

r = n-1 the second term vanishes, and the error sum of squares is minimized

at the first term.

20
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Footnote

The developments in this paper were initiated and carried out in

part while the author Jas a Visiting Research Fellow at Educational

Testing Service. They were extended and concluded at the Oregon Research

Institute under Grant Nos. MH 12972 and MN 15506 frum the National

Institute of Mental Health, U. S. Public Health Service.
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TABLE 1

The ith submatrix Z. = I
JK

Pll Pjk PJK

yi
1 1

Y.IJK

2 3



TABLE 2

The Pairs x Singles Scale Matrix Z.. = S

22
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Y.j k

Y.I,n-1,n

0). 0i2
0.. .

1 elk 0i,n-1 0in

1 -1 0 0 0 0

0 0 1
-1

0 0 0 0 1 1

2A


